A Numerical and Experimental Study on the Effects of CO2 on Laminar Diffusion Methane/Air Flames

Author:

Zhang Lei1,Ren Xiaohan2,Sun Rui1,Levendis Yiannis A.3

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

2. Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China

3. Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115

Abstract

Abstract Flue gas recirculation (FGR) is an effective method to reduce NOx emissions from the combustion of fuels, such as natural gas. Nitrogen, carbon dioxide, and water are the main components of flue gas. Nitrogen is an inert gas, and water can be condensed out of the effluent before FGR. However, recycled CO2 can alter the physical and chemical combustion characteristics of a fuel. This research investigated the effects of CO2 on CH4/air laminar diffusion flames, both experimentally and numerically. Experiments used laser-induced fluorescence to measure OH and CH distributions in the resulting flames, at different CO2 concentrations. Numerical methods were used to investigate the reaction mechanism and predict temperature and species concentration fields, as well as the NOx formation. Experiments showed that the CH fluorescence intensities decreased with the addition of CO2, while the OH fluorescence intensities increased. Both the directed relation graph method and the sensitivity analysis method were used to reduce the GRI-mech 3.0 mechanism. The chemical kinetics of methane combustion were analyzed using the reduced mechanism with the diffusion opposed-flow flame model in the chemkin 4.1 software package to determine the main reactions among the major species. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased. These CFD simulations using the reduced mechanism were in agreement with the experimental data. Thus, the reduced mechanism was then used to predict NO concentrations. Numerical simulations showed that as the amount of CO2 in the fuel increased, the concentration of CH decreased, and, as a result, lower amounts of NO were predicted.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3