Kinematics Meets Crystallography: The Concept of a Motion Space1

Author:

Chirikjian Gregory S.1

Affiliation:

1. Robot and Protein Kinematics Laboratory, Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218 e-mail:

Abstract

In this paper, it is shown how rigid-body kinematics can be used to assist in determining the atomic structure of proteins and nucleic acids when using x-ray crystallography, which is a powerful method for structure determination. The importance of determining molecular structures for understanding biological processes and for the design of new drugs is well known. Phasing is a necessary step in determining the three-dimensional structure of molecules from x-ray diffraction patterns. A computational approach called molecular replacement (MR) is a well-established method for phasing of x-ray diffraction patterns for crystals composed of biological macromolecules. In MR, a search is performed over positions and orientations of a known biomolecular structure within a model of the crystallographic asymmetric unit, or, equivalently, multiple symmetry-related molecules in the crystallographic unit cell. Unlike the discrete space groups known to crystallographers and the continuous rigid-body motions known to kinematicians, the set of motions over which MR searches are performed does not form a group. Rather, it is a coset space of the group of continuous rigid-body motions, SE(3), with respect to the crystallographic space group of the crystal, which is a discrete subgroup of SE(3). Properties of these “motion spaces” (which are compact manifolds) are investigated here.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference30 articles.

1. Park, F. C., 1991, “The Optimal Kinematic Design of Mechanisms,” Ph.D. thesis, Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Group-theoretic analysis of symmetry-preserving deployable structures and metamaterials;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-07-29

2. Quantizing Euclidean Motions via Double-Coset Decomposition;Research;2019-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3