Feasibility Study of Long-Term Dual Tank Photovoltaic/Thermal Indirect Parallel Solar-Assisted Heat Pump Systems

Author:

Taoufik Brahim12,Abdelmajid Jemni2

Affiliation:

1. Higher Institute of Applied Sciences and Technology of Sousse (ISSAT), Energy Department, University of Sousse, P.O. Box 4003, Sousse, Tunisia;

2. Laboratory Studies of Thermal and Energy Systems (LESTE), National Engineering School of Monastir, University of Monastir, Monastir, Tunisia

Abstract

Abstract A novel dual tank photovoltaic/thermal (PV/T) indirect parallel solar-assisted heat pump system was investigated in this paper, which filled a gap in the literature. Furthermore, a long-term performance study analysis was performed under Tunisian climate to offset domestic electric and hot water loads. Optimal operations of such a system are achieved based on a simplified mathematical model. Results showed that the average thermal and electric energy efficiency is about 39.65% and 11.38%, respectively. Results revealed that the increase in solar radiation results in an improvement of the system's thermal-based coefficient of performance efficiency coefficient reaching 4.49 at 893 W/m2. PV/T average electrical energy output is found to 0.68 kW h/m2/day with an annual average of 177.42 kW h/m2, which leads to an annual electricity surplus of about 5.83%. A reversible heat pump operation seemed more advantageous especially in the summer months, reducing yearly electric demand by about 84.57%. An economic analysis is undertaken and a payback period of about 12.7 years is found. The current study provided a framework for assessing such a system's behavior and providing useful flexibility to achieve the best possible system performance.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3