Affiliation:
1. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439957131, Iran
Abstract
This paper aims to study the effect of particle migration on flow and heat transfer of nanofluids flowing through a circular pipe. To do this, a two-component model proposed by Buongiorno (2006, “Convective Transport in Nanofluids,” ASME J. Heat Transfer, 128, pp. 240–250) was used and a numerical study on laminar flow of alumina-water nanofluid through a constant wall temperature tube was performed. The effects of nonuniform distribution of particles on heat-transfer coefficient and wall shear stress are shown. Obtained results illustrate that by considering the particle migration, the heat-transfer coefficient increases while the wall shear stress decreases, compared with uniform volume fraction. Thus, it can be concluded that the enhancement of the convective heat transfer could not be solely attributed to the enhancement of the effective thermal conductivity, and beside other reasons, which may be listed as this higher enhancement, particle migration is proposed to be an important reason.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献