Effects of Tension-Compression Cycling on Fatigue Crack Growth in High Strength Alloys

Author:

Crooker T. W.1

Affiliation:

1. Metallurgy Division, Naval Research Laboratory, Washington, D. C.

Abstract

Crack growth by low-cycle fatigue is a potential failure mechanism for welded pressure vessels. Residual stresses remaining from fabrication or caused by localized plastic deformation incurred in shakedown can result in operating stress cycles approaching fully-reversed tension-compression. However, virtually all of the fatigue crack propagation data reported in the literature for structural alloys are generated under simple, zero-tension cycling, and their direct application to such problems is questionable. This paper presents the results of a study which shows that the compression portion of fully-reversed tension-compression cycling can contribute substantially to fatigue crack growth rates in plate thickness medium-to-high strength alloys. Data from several alloys show a 50 percent increase in fatigue crack growth rates due to tension-compression cycling. The implications of these findings and methods for applying the results of this study are discussed.

Publisher

ASME International

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue Crack Growth Markers to Aid Quantitative Fractography;Fractography;2024-06-01

2. Crack Tip Plastic Zone Effect on Fatigue Crack Propagation;Fatigue and Corrosion in Metals;2024

3. The fatigue crack growth under tension-compression loading;CONSTRUCTION: THE FORMATION OF LIVING ENVIRONMENT: FORM-2022;2023

4. Crack Tip Plastic Zone Effect on Fatigue Crack Propagation;Fatigue and Corrosion in Metals;2012-10-05

5. Marker Loads for Quantitative Fractography of Fatigue Cracks in Aerospace Alloys;ICAF 2009, Bridging the Gap between Theory and Operational Practice;2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3