Continuous Model for the Transverse Vibration of Cracked Timoshenko Beams

Author:

Carneiro Sergio H. S.1,Inman Daniel J.2

Affiliation:

1. Instituto de Aeronáutica e Espaço, Centro Técnico Aeroespacial, CTA/IAE/ASA, S. J. Campos-SP 12228, Brazil

2. Center for Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University, 310 NEB, mail code 0261, Blacksburg, VA 24061

Abstract

Abstract A continuous model for the transverse vibrations of cracked beams including the effect of shear deformation is derived. Partial differential equations of motion and associated boundary conditions are obtained via the Hu-Washizu-Barr variational principle, which allows simultaneous and independent assumptions on the displacement, stress and strain fields. The stress and strain concentration caused by the presence of a crack are represented by so-called crack disturbance functions, which modify the kinematic assumptions used in the variational procedure. For the shear stress/strain fields, a quadratic distribution over the beam depth is assumed, which is a refinement of the typical constant shear stress distribution implicit in the Timoshenko model for uncracked beams. The resulting equations of motion are solved by a Galerkin method using local B-splines as test functions. As a numerical verification, natural frequencies of the linear, open-crack model are computed and the results are compared to analytical results from similar models based on Euler-Bernoulli assumptions and experimental results found in the literature. For short beams, results from a 2-D finite element model are used to confirm the advantages of the proposed model when compared with previous formulations.

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3