The Effects of Large Blood Vessels on Temperature Distributions During Simulated Hyperthermia

Author:

Chen Zong-Ping1,Roemer Robert B.2

Affiliation:

1. Radiation Oncology Department, University of Arizona, Arizona Health Sciences Center, Tucson, AZ 85724

2. Aerospace and Mechanical Engineering Department, University of Arizona, Arizona Health Sciences Center, Tucson, AZ 85724

Abstract

Several three-dimensional vascular models have been developed to study the effects of adding equations for large blood vessels to the traditional bioheat transfer equation of Pennes when simulating tissue temperature distributions. These vascular models include “transiting” vessels, “supplying” arteries, and “draining” veins, for all of which the mean temperature of the blood in the vessels is calculated along their lengths. For the supplying arteries this spatially variable temperature is then used as the arterial temperature in the bioheat transfer equation. The different vascular models produce significantly different locations for both the maximum tumor and the maximum normal tissue temperatures for a given power deposition pattern. However, all of the vascular models predict essentially the same cold regions in the same locations in tumors: one set at the tumors’ corners and another around the inlets of the large blood vessels to the tumor. Several different power deposition patterns have been simulated in an attempt to eliminate these cold regions; uniform power in the tumor, annular power in the tumor, preheating of the blood in the vessels while they are traversing the normal tissue, and an “optimal” power pattern which combines the best features of the above approaches. Although the calculations indicate that optimal power deposition patterns (which improve the temperature distributions) exist for all of the vascular models, none of the heating patterns studied eliminated all of the cold regions. Vasodilation in the normal tissue is also simulated to see its effects on the temperature fields. This technique can raise the temperatures around the inlet of the large blood vessles to the tumor (due to the higher power deposition rates possible), but on the other hand, normal tissue vasodilation makes the temperatures at the tumor corners slightly colder.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3