Flow in a Turbine Cascade: Part 1—Losses and Leading-Edge Effects

Author:

Moore J.1,Ransmayr A.1

Affiliation:

1. Department of Mechancial Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061

Abstract

An experimental investigation was conducted to study the effect of the leading-edge shape on the overall losses in a large-scale linear cascade of turbine blades. The leading-edge shapes used were a cylinder and a wedge. The cascade was designed to be geometrically similar to the cascade used by Langston et al. at United Technologies Research Center, with the same span/chord and pitch/chord ratios. Measurements of wall static pressure on the blades and of total pressure and flow direction downstream of the cascade showed only minor changes due to the alteration of the leading-edge shape. The measurements of the flow and loss distributions downstream of the cascade complement the results of Langston et al., which showed the flow development only within the cascade. The downstream flow is important, however, as apppoximately 50 percent of the losses occur downstream of the trailing edge. Regions of high loss were found near midspan at an axial location 40 percent of the axial chord downstream of the trailing edge. The sources of fluid in these regions are determined in Part 2.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3