A Three-Dimensional Conjugate Approach for Analyzing a Double-Walled Effusion-Cooled Turbine Blade

Author:

Ngetich Gladys C.1,Murray Alexander V.1,Ireland Peter T.1,Romero Eduardo2

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK e-mail:

2. Rolls-Royce Plc., Bristol BS34 7QE, UK e-mail:

Abstract

A double-wall cooling scheme combined with effusion cooling offers a practical approximation to transpiration cooling which in turn presents the potential for very high cooling effectiveness. The use of the conventional conjugate computational fluid dynamics (CFD) for the double-wall blade can be computationally expensive and this approach is therefore less than ideal in cases where only the preliminary results are required. This paper presents a computationally efficient numerical approach for analyzing a double-wall effusion cooled gas turbine blade. An existing correlation from the literature was modified and used to represent the two-dimensional distribution of film cooling effectiveness. The internal heat transfer coefficient was calculated from a validated conjugate analysis of a wall element representing an element of the aerofoil wall and the conduction through the blade solved using a finite element code in ANSYS. The numerical procedure developed has permitted a rapid evaluation of the critical parameters including film cooling effectiveness, blade temperature distribution (and hence metal effectiveness), as well as coolant mass flow consumption. Good agreement was found between the results from this study and that from literature. This paper shows that a straightforward numerical approach that combines an existing correlation for film cooling from the literature with a conjugate analysis of a small wall element can be used to quickly predict the blade temperature distribution and other crucial blade performance parameters.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3