Design of Novel Gas Foil Thrust Bearings and Test Validation in a High-Speed Test Rig

Author:

LaTray Nguyen1,Kim Daejong1

Affiliation:

1. Turbomachinery and Energy Systems Laboratory, Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, 500 West 1st Street, Arlington, TX 76019

Abstract

Abstract Small gas foil bearings (FBs) with shaft diameter below 25 mm can find many applications in air compressors for fuel cells, electrical turbo chargers, small unmanned air vehicles, turbo alternators, etc. These small machines are characterized by very light load to the radial FBs, and thus rotordynamics stability is more challenging than load capacity. However, a main challenge of gas foil thrust bearings (GFTBs) is how to increase the load capacity, and the challenge remains the same regardless of the size. In previous publications on experimental studies on GFTBs, the measured load capacity is well below the prediction due to challenges in testing as well as manufacturing of GFTBs. Difficulty in achieving the design load capacity often leads to increasing the bearing size in actual applications with penalty of higher power loss. This paper presents design feature of a novel GFTB with outer diameter of 38 mm and static performance up to 155 krpm under external load of 75 N using a high-speed test rig. The 38 mm GFTB presented in this paper is a three-layered structure for easy design and manufacturing, and the unique design feature allows easy scale down and scale up to different sizes. Reynolds equations for compressible gas and the two-dimensional thin plate model were adopted for fluid–structure interaction simulation to predict load capacity and power loss of the GFTB. The predicted power loss and load capacity agree well with the measurements.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3