Affiliation:
1. The University of Texas at Austin, Austin, TX
Abstract
Film cooling adiabatic effectiveness of a simulated turbine airfoil leading edge was studied experimentally. The leading edge had two rows of holes, one at nominally the stagnation line position and the second a few hole diameters downstream. Hole positions at the leading edge, and inclination of the holes with respect to the surface, were different than typically used in previous studies, but were representative of current design practice. Various leading edge film cooling parameters were investigated including stagnation line position, free-stream turbulence level, leading edge geometry, and coolant to mainstream density ratio. Large density ratios were obtained by cooling the injected coolant to very low temperatures. Large scale, high level free-stream turbulence (Tu = 20%) was generated using a specially developed cross-jet turbulence generator. An infrared camera system was used to obtain well resolved surface temperature distributions around the coolant holes and across the leading edge. Results from the experiments showed considerably higher optimum blowing ratios than found in previous studies. The stagnation line position was found to be important in influencing the direction of coolant flow from the first row of holes. High free-stream turbulence levels were found to greatly decrease adiabatic effectiveness at low blowing ratios (M = 1.0), but had little effect at high blowing ratios (M = 2.0 and 2.5). Adiabatic effectiveness distributions were very similar for circular and elliptical leading edges. Experiments conducted at coolant to mainstream density ratios of 1.1 and 1.8 showed distinctly different flow characteristics in the stagnation line region for the different density ratio coolants.
Publisher
American Society of Mechanical Engineers
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献