A Methodology Proposal to Design and Analyse Counterrotating High Speed Propellers

Author:

Nicoud D.1,Brochet J.1,Goutines M.1

Affiliation:

1. SNECMA Villaroche, Moissy-Cramayel, France

Abstract

Contrarotating high speed propellers are able to significantly reduce fuel consumption of high subsonic aircrafts. The achievement of this goal requires the optimization of the transonic flowfield on the blades in order to obtain high efficiency. For several years, 2D and 3D aerodynamic computational methods have been used to design high performance turbofans. A similar methodology can be developed for high speed propeller design, and this paper presents a typical application of such methods. We first present an application of the through-flow method. An outer fictitious casing is chosen in order to simulate undisturbed flow far from the propellers, and the mesh is adapted to the high swept blades. Radial distribution of loading is selected using aerodynamic criteria. Then, a quasi geometrical method supplies the bidimensional profiles accounting for structural specifications such as chord length, maximum thickness and root attachment. Suction side incidence and downstream deviation are also specified. After the profile stacking operations, which use conformal application on the axisymetric stream surfaces, the tridimensional transonic flowfield is drawn by a 3D Euler solver on an appropriate domain. This code uses a multi-domains technique and includes the energy equation for non-constant rothalpy cases. Particular interest is focused on the Mach number distributions and on the shock strength. The final loss prediction is made by means of a shock loss model and a bidimensional boundary layer calculation based on the Euler static pressure distributions. The profile shapes are modified and the above process is repeated until the required deflection, a convenient throat margin, and sufficiently thin and well attached boundary layers are obtained. Finally, the global performances are issued from 3D Euler and boundary layer computations, completed by the calculation of secondary flow effects.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3