Engine Rapid Shutdown: Experimental Investigation on the Cooling System Transient Response

Author:

Piccione Rocco1,Bova Sergio1

Affiliation:

1. Department of Mechanics, University of Calabria, 87030 Arcavacata di Rende (Cosenza), Italy

Abstract

Experimental measurements have been taken on a production four-cylinder, multipoint (fuel) injection spark-ignition engine, 1.2 dm3 displacement with a four-valve per cylinder aluminum head, and a 60 kW at 5500 rpm rated power. The aim of the investigation was to understand the behavior of the cooling system of a small automotive engine, which was operated for a prolonged period at high speed under full or part load, then brought to idle for a short period and finally shut down. In this study, the effects of different loads, idle operation time, and lengths of the engine-radiator piping were analyzed. In particular, experimental tests were carried out with the engine running at 4000 rpm under different brake mean effective pressure values in the range 496 to 1133 kPa. In all experimental tests the engine was brought to idle in 5 s, and measurements were repeated for different values of the idle operation time ranging from 1 s to 80 s. Test data of coolant conditions and metal temperature at 26 points of the engine head and liner were recorded. The cooling circuit was instrumented with transparent tubes at the radiator inlet and photographs of the vapor phase moving to the radiator were taken during experimental tests. The volume of leaked coolant as a function of time was also measured. Additional tests were carried out to evaluate the effects of different lengths of the engine-radiator piping on the after-boiling phenomenon. Finally, in order to make the results applicable also to nonautomotive engines, measurements were repeated without the standard cabin heater and the associated piping. The investigation results show that as the engine is shut down and coolant flow stops, the head metal may be hot enough to vaporize a fraction of the coolant contained in the cylinder head passages, causing the pressure within the cooling circuit to rise above the threshold value of the radiator cap pressure valve and, consequently, an important quantity of the coolant to be expelled.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3