Electricity in the Air: Tethered Wind Energy Systems

Author:

Vermillion Chris1,Fagiano Lorenzo2

Affiliation:

1. Altaeros Energies

2. Swiss Federal Institute of Technology

Abstract

This article summarizes the fundamental dynamics and control attributes and challenges faced by stationary and crosswind airborne wind energy (AWE) systems. AWE systems have undergone rapid and steady technological development over the past decade, with several organizations demonstrating basic economic and technical viability of their concepts. The theoretical and numerical analyses performed so far indicate that crosswind systems have the potential to achieve a power curve similar in shape to that of current commercial wind turbines, with rated power of 2–5 MW. The ongoing development activities are increasing the viability of the concept; yet, several technical issues remain and need to be addressed, to definitively show that this technology can be scaled up to industrial size. The expert analysis suggests that AWE technologies are at the dawn of their development, and there is significant untapped potential for the use of innovative solutions in multiple fields such as materials, power electronics, and aerodynamics, to tackle problems. These challenges present a wealth of opportunities for future, multidisciplinary research and development activities.

Publisher

ASME International

Subject

Mechanical Engineering

Reference34 articles.

1. IEA World Energy Outlook 2010, Paris, France: IEA Publications, 2010.

2. “U.S. Energy Information Administration International Energy Outlook 2011, ” available online: www.eia.doe.gov/oiaf/ieo/index.html, 2011.

3. “Global Assessment of High-Altitude Wind Power,”;Energies,2009

4. “Airborne Windmills and Communication Aerostats,”;Journal of Aircraft,1976

5. “Electricity Generation from Jet-Stream Winds,”;Journal of Energy,1979

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3