Rough Surface Normal Nanocontact Stiffness: Experimental Measurements and Rough Surface Contact Model Predictions

Author:

Lee Jungkyu1,Beheshti Ali2,Polycarpou Andreas A.13

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801;

2. Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710

3. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843 e-mail:

Abstract

This work presents experimental contact stiffness measurements for various thin films as well as homogenous materials through pressing a flat punch onto a nominally flat rough surface. These materials are typically used in micro/nano technological applications with thickness of the order of few nanometers. The experimental contact stiffness results are compared with predictions by different statistical rough surface contact models to assess their predictive accuracy for thin-film applications and, in addition, to get better insight to the physics of the contact. It is observed that rough surface contact models that account for asperity interaction show good agreement with the experimental results of the thin-layered specimens contact response. This indicates the importance of accounting for asperity interaction in surface roughness contact modeling of relatively smooth thin-film materials. It is verified that interfaces with compliant films on stiff substrates as well as homogeneous materials compare relatively well with statistical models accounting for asperity interactions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3