Adiabatic Film Cooling Effectiveness Measurements Throughout Multirow Film Cooling Arrays

Author:

Natsui Greg1,Little Zachary1,Kapat Jayanta S.1,Dees Jason E.2

Affiliation:

1. Center for Advanced Turbomachinery and Energy Research, Laboratory for Turbine Aerodynamics, Heat Transfer and Durability, University of Central Florida, Orlando, FL 32816 e-mail:

2. GE Global Research, Niskayuna, NY 12309 e-mail:

Abstract

Adiabatic film cooling effectiveness measurements are obtained using pressure-sensitive paint (PSP) on a flat film cooled surface. The effects of blowing ratio and hole spacing are investigated for four multirow arrays comprised of eight rows containing 52 holes of 3.8 mm diameter with 20 deg inclination angles and hole length-to-diameter ratio of 11.2. The four arrays investigated have two different hole-to-hole spacings composed of cylindrical and diffuser holes. For the first case, lateral and streamwise pitches are 7.5 times the diameter. For the second case, pitch-to-diameter ratio is 14 in lateral direction and 10 in the streamwise direction. The holes are in a staggered arrangement. Adiabatic effectiveness measurements are taken for a blowing ratio range of 0.3–1.2 and a density ratio of 1.5, with CO2 injected as the coolant. A thorough boundary layer analysis is presented, and data were taken using hotwire anemometry with air injection, with boundary layer, and turbulence measurements taken at multiple locations in order to characterize the boundary layer. Local effectiveness, laterally averaged effectiveness, boundary layer thickness, momentum thickness, turbulence intensity, and turbulence length scale are presented. For the cylindrical holes, at the first row of injection, the film jets are still attached at a blowing ratio of 0.3. By a blowing ratio of 0.5, the jet is observed to lift off, and then impinge back onto the test surface. At a blowing ratio of 1.2, the jets lift off, but reattach much further downstream, spreading the coolant further along the test surface. A thorough uncertainty analysis has been conducted in order to fully understand the presented measurements and any shortcomings of the measurement technique. The maximum uncertainty of effectiveness and blowing ratio is 0.02 counts of effectiveness and 3%, respectively.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3