PIV-POD Investigation of the Wake of a Sharp-Edged Flat Bluff Body Immersed in a Shallow Channel Flow

Author:

Singha Arindam1,Shinneeb A.-M.2,Balachandar Ram2

Affiliation:

1. Department of Mechanical Engineering, University of Windsor, Windsor, N9B 3P4, Canada

2. Department of Civil and Environmental Engineering, University of Windsor, Windsor, N9B 3P4, Canada

Abstract

This paper reports particle-image velocimetry measurements of instantaneous velocity fields in the wake of a sharp-edged bluff body immersed vertically in a shallow smooth open channel flow. The maximum flow velocity was 0.19 m/s and the Reynolds number based on the water depth was 18,270. The purpose of the present study is to show the vertical variation of the velocity field in the near region of a shallow wake. Measurements of the flow field in the vertical central plane and in the horizontal near-bed, mid-depth, and near-surface planes were taken. Then, the mean flow quantities such as the mean velocity, turbulence intensity, and Reynolds stress fields were investigated. In addition, the proper orthogonal decomposition technique was used to reconstruct the velocity fields to investigate the energetic vortical structures. The results showed that the largest recirculation zone in the mean velocity fields occurred in the mid-depth velocity field, while the smallest one occurred near the bed. Also, the fluid was entrained from the sides toward the wake central plane in the three horizontal velocity fields but with different rates. This behavior was attributed to the existence of quasi-streamwise vortices near the boundaries. In addition, patterns of ejection and sweep events near the free surface similar to the features commonly observed near the wall-bounded flows were observed.

Publisher

ASME International

Subject

Mechanical Engineering

Reference36 articles.

1. Shallow Flows: A Definition;Jirka

2. Sedighi, K., and Farhadi, M., 2006, “Three Dimensional Study of Vortical Structures Around a Cubic Bluff Body in a Channel,” Facta Universitatis, Series Mech. Engrg., 4(1), pp. 1–16.

3. Turbulence in Open-Channel Flows

4. Strouhal Numbers of Rectangular Cylinders;Okajima;J. Fluid Mech.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3