Numerical Modeling of Spark Ignition in Internal Combustion Engines

Author:

Pyszczek Rafał1,Hahn Jooyoung2,Priesching Peter2,Teodorczyk Andrzej1

Affiliation:

1. Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665 Warsaw, Poland

2. AVL List GmbH, Hans-List-Platz 1, 8020 Graz, Austria

Abstract

Abstract In this paper, we aim to develop a comprehensive ignition model for three-dimensional (3D) computational fluid dynamics (CFD) combustion modeling in spark-ignited (SI) engines. In the proposed model, we consider the following aspects separately to model the spark ignition process comprehensively. An electrical circuit is solved for calculation of the energy transferred to the spark plasma channel. The spark itself is represented by computational particles for monitoring its motion and ignitability. Heat diffusion from the spark toward the surrounding mixture is calculated with a one-dimensional (1D) model, resulting in the temperature obtained at the surface of the spark channel. Based on the calculated temperature and interpolated pressure and local mixture composition, an instantaneous ignition delay time is read from tabulated values for every particle representing the spark channel. The final ignitability criterion is defined by a precursor calculated with a zero-dimensional (0D) model, which accounts for the history of changes in spark surface temperature and local mixture properties. As soon as the precursor reaches a threshold value for a given spark channel particle, a flame kernel is introduced at a position of the particle. Flame propagation is generally treated by the G-equation combustion model. Validation is performed by measurements of the spark discharge process in high-velocity flow field and single-cylinder AVL research engine. We demonstrate that the proposed model can correctly reproduce the electrical circuit, spark channel dynamics, and overall engine performance.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3