Artificial Neural Networks in Radiation Heat Transfer Analysis

Author:

Yarahmadi Mehran1,Robert Mahan J.1,McFall Kevin2

Affiliation:

1. Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061

2. Department of Mechatronics Engineering, Kennesaw State University, Kennesaw, GA 30144

Abstract

Abstract In the Monte Carlo ray-trace (MCRT) method, millions of rays are emitted and traced throughout an enclosure following the laws of geometrical optics. Each ray represents the path of a discrete quantum of energy emitted from surface element i and eventually absorbed by surface element j. The distribution of rays absorbed by the n surface elements making up the enclosure is interpreted in terms of a radiation distribution factor matrix whose elements represent the probability that energy emitted by element i will be absorbed by element j. Once obtained, the distribution factor matrix may be used to compute the net heat flux distribution on the walls of an enclosure corresponding to a specified surface temperature distribution. It is computationally very expensive to obtain high accuracy in the heat transfer calculation when high spatial resolution is required. This is especially true if a manifold of emissivities is to be considered in a parametric study in which each value of surface emissivity requires a new ray-trace to determine the corresponding distribution factor matrix. Artificial neural networks (ANNs) offer an alternative approach whose computational cost is greatly inferior to that of the traditional MCRT method. Significant computational efficiency is realized by eliminating the need to perform a new ray trace for each value of emissivity. The current contribution introduces and demonstrates through case studies estimation of radiation distribution factor matrices using ANNs and their subsequent use in radiation heat transfer calculations.

Funder

NASA's Langley Research Center

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3