Numerical Calculation of Convective Heat Transfer Between Rotating Coaxial Cylinders With Periodically Embedded Cavities

Author:

Hayase T.1,Humphrey J. A. C.2,Greif R.2

Affiliation:

1. The Institute of Fluid Science, Tohoku University, Sendai, Japan

2. Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720

Abstract

A numerical study has been performed for the flow and heat transfer in the space between a pair of coaxial cylinders with the outer one fixed and the inner one rotating. Of special interest is the case where either one of the cylinders has an axially grooved surface resulting in twelve circumferentially periodic cavities embedded in it. The ends of the cylinder are bounded by flat impermeable walls that are either fixed to the outer cylinder or rotate with the inner one. Such a geometry is common in electric motors where an improved understanding of thermophysical phenomena is essential for analysis and design. Discretized transport equations are solved for two-dimensional and three-dimensional, steady, constant property laminar flow using a second-order accurate finite volume scheme within the context of a SIMPLER-based iterative methodology. The two-dimensional calculations reveal a shear-induced recirculating flow in the cavities. For supercritical values of the Reynolds number, the three-dimensional calculations show how the flow in a cavity interacts with Taylor vortices in the annular space to enhance heat transfer. Relative to coaxial cylinders with smooth surfaces, for the conditions of this study the transport of momentum and heat is raised by a factor of 1.2 in the case of cavities embedded in the inner cylinder and by a factor of 1.1 in the case of cavities embedded in the outer cylinder.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3