Cold Flow Experiments in a Sub-Scale Model of the Diffuser-Combustor Section of an Industrial Gas Turbine

Author:

Kapat J. S.1,Wang T.1,Ryan W. R.2,Diakunchak I. S.2,Bannister R. L.2

Affiliation:

1. Clemson University, Clemson, SC

2. Westinghouse Electric Corporation, Orlando, FL

Abstract

This paper describes the experimental facility and flow measurements in a sub-scale, 360-degree model of the diffuser-combustor section of an advanced developmental industrial gas turbine. The experiments were performed under cold flow conditions which can be scaled to actual machine operation through the use of a conventional flow parameter. Wall pressure measurements were used to calculate the static pressure recovery in the annular pre-diffuser. A five-hole probe was used to measure the complex three-dimensional flow in the dump diffuser. Mass-weighted average total pressures were calculated to examine the loss characteristics of the annular and the dump diffuser. The “sink” effect caused by the combustors induces a nonuniform velocity profile and pressure distribution at the exit of the annular pre-diffuser, thereby reducing the effectiveness of the annular pre-diffuser. The outer region of the dump diffuser effectively diffuses the flow while recirculation in other areas of the dump diffuser lowers diffuser effectiveness. Partially nonuniform flow distribution was observed at the entrance to the annular passage between the combustors and the combustor housing (top hat). The existence of circumferential flow in this annular passage tends to increase air flow uniformity into the combustor. Although a specific geometry was selected for the present study, the results provide sufficient generality for improving understanding of the complex flow behaviors in the reverse flow diffuser-combustor sections of industrial gas turbines.

Publisher

American Society of Mechanical Engineers

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3