Affiliation:
1. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
2. School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA 30332
Abstract
The development of new coronary artery constitutive models is of critical importance in the design and analysis of coronary replacement grafts. In this study, a two-parameter logarithmic complementary energy function, with normalized measured force and internal pressure as the independent variables and strains as the dependent variables, was developed for healthy porcine coronary arteries. Data was collected according to an experimental design with measured force ranging from 9.8 to 201 mN and internal pressure ranging from 0.1 to 16.1 kPa (1 to 121 mmHg). Comparisons of the estimated constitutive parameters showed statistically significant differences between the left anterior descending [LAD] and right coronary artery [RCA], but no differences between the LAD and left circumflex [LCX] or between the LCX and RCA. Point-by-point strain comparisons confirm the findings of the model parameter study and isolate the difference to the axial strain response. Average axial strains for the LAD, LCX, and RCA are 0.026±0.009,0.015±0.005, and 0.011±0.009, respectively, at all physiologic loads, suggesting that the axial strains in the LAD are significantly higher than in the other regions.
Subject
Physiology (medical),Biomedical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献