High Temperature Rotors: Failure Mechanisms and Remnant Life Assessment

Author:

Zhang Xiaoling1

Affiliation:

1. E.ON Engineering Limited, Technology Centre, Ratcliffe-on-Soar, Nottingham NG11 0EE, UK

Abstract

This paper presents the common failure mechanisms of high temperature rotors and the engineering approaches to their remnant life prediction. In fatigue crack growth at the rotor bore, cracks from original forging defects or induced during long service life may grow under cyclic loading to its critical size causing fast fracture. In fatigue-creep interaction at the shaft surface, high tensile residual stress relaxation under high operating temperature causes creep crack initiation. The cracks may then grow under the combination of cyclic loading and high operating temperature. Remnant creep life at the center of the rotor is based on the time while accumulated creep strain reaches its threshold level. Creep rupture could occur at other locations such as the outside surface of the shaft at disks∕shaft radii or blade fixings. Finite element analyses were carried out to analyze stresses, temperature transients, creep strain, and reference stress for creep rupture. Fracture mechanics analyses with R5 and R6 approaches were used to estimate the crack initiation and growth rates, the critical crack sizes, and the type of the failure. Appropriate Paris law and Norton creep laws were used for fatigue and creep crack growth. Depending on the failure mechanism, a rotor’s remnant life is defined in terms of allowable starts and operating hours.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Reference8 articles.

1. MSC∕ATRAN , Version 2001 r3, MSC Software.

2. ABAQUS , Version 6.5.1, ABAQUS (UK) Ltd.

3. British Energy: R6-Code 4.2: Assessing the Integrity of Structures Containing Defects.

4. British Energy: Assessment Procedure R5: An Assessment Procedure for the High Temperature Response of Structures, Issue 3, 2003.

5. Compilation of Stress-Relaxation Data for Engineering Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shrink connection modelling of the steam turbine rotor;Engineering Failure Analysis;2013-12

2. Crack Growth Prediction of the Steam Turbine Generator Shaft;Journal of Physics: Conference Series;2011-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3