Bi-LSTM-Based Dynamic Prediction Model for Pulling Speed of Czochralski Single-Crystal Furnace

Author:

Feng Zhengyuan1,Hu Xiaoliang2,Tian Zengguo1,Jiang Baozhu1,Zhang Hongshuai3,Zhang Wanli4

Affiliation:

1. Zhengzhou University School of Physics and Microelectronics, , Zhengzhou, Henan 450001 , China

2. MCL Electronic Materials Co., Ltd. , Luoyang , Henan 471032 , China

3. Zhengzhou University School of Mechanical and Power Engineering, , Zhengzhou, Henan 450001 , China

4. Luoyang Dejing Intelligent Technology, Company Ltd. , Luoyang, Henan 471032 , China

Abstract

Abstract With the rapid development of microelectronics science and technology, the quality of IC-grade silicon single crystal directly affects the yield and stability of the performance of semiconductor device production. As the main equipment for the preparation of such materials, the monitoring and maintenance of the working condition of the single crystal furnace are crucial. Bi-directional long short-term memory (Bi-LSTM) is an innovative neural network paradigm that is used to predict future occurrences by learning the bi-directional long-term dependencies of time-steps and serial data. This paper built a Bi-LSTM based model that can dynamically predict the pulling speed of a Czochralski (Cz) single-crystal furnace by modeling the time series of operational parameters. The Bi-LSTM model is validated using real data from a silicon single-crystal factory. It is proven that the model achieved higher accuracy than LSTM, ANN, SVR, and XGBOOST. The experimental results verify the validity of modeling the pulling speed of single-crystal furnace devices through the Bi-LSTM model by using the time series of multi-dimensional parameters. Therefore, the Bi-LSTM model can serve as a reference for modeling the parameters of such devices.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference30 articles.

1. 2021 State of the U.S. Semiconductor Industry;SIA,2021

2. World Semiconductor Trade Statistics (WSTS) Semiconductor Market Forecast;WSTS,2021

3. Jan Czochralski—Father of the Czochralski Method;Tomaszewski;J. Cryst. Growth,2002

4. Diameter Control of Czochralski Grown Crystals;Valentino;J. Cryst. Growth,1974

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3