Affiliation:
1. Department of Engineering Sciences, Homi Bhabha National Institute, Anushakti Nagar, Mumbai, Maharashtra 400094, India; Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
Abstract
Abstract
Post Fukushima, nuclear plants are being retrofitted with severe accident mitigation measures. For attaining depressurization of the containment and mitigate the consequences of the release of the radioactivity to the environment during a severe accident condition, filtered containment venting systems (FCVS) are proposed to be installed in existing reactors and being designed for advanced reactors. The design of FCVS is particular to the reactor type. The FVCS configuration considered in this paper comprises of a manifold of venturi scrubber enclosed in a scrubber tank along with metal fiber filter and demister for an advanced Indian reactor. This study focuses on the assessment of the design of the venturi scrubber for the reactor conditions at which venting is carried out through a numerical model. The numerical model is first validated with experiments performed for prototypic conditions. The predicted pressure drop and the iodine absorption efficiency were found to be in good match with the experimental measurements. Subsequently, the model is implemented for predicting the hydrodynamics, i.e., pressure drop, droplet sizes and distribution, and iodine absorption for prototypic conditions. The hydrodynamics, i.e., pressure profile in the venturi scrubber showed a decrease in the converging section and in the throat section. The diverging section showed decrease in recovery of pressure with the decrease in gas flow because of the increased liquid loading to the scrubber. The iodine absorption efficiency showed a value of 92% for high gas velocity which decreased to 68% for the lowest gas flow rate.
Subject
Nuclear Energy and Engineering,Radiation