Affiliation:
1. Department of Engineering Science, University of Oxford, Oxford, Oxfordshire OX1 3PJ, UK
2. Department of Mechanical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark
Abstract
Abstract
Steep, focusing waves can experience fast and local nonlinear evolution of the spectrum due to wave–wave interactions resulting in energy transfer to both higher and lower wavenumber components. The shape and kinematics of a steep wave may, thus, differ substantially from the predictions of linear theory. We have investigated the role of nonlinear interactions on group shape for a steep, narrow-banded, directionally spread wave group focusing in deep water using the fully nonlinear potential flow solver, oceanwave3d. Exact second-order correction of the initial conditions has been implemented together with a novel third-order approximate correction based on a Stokes-type formulation for surface elevation combined with a scaling argument for the third-order velocity potential. Four-phase separation reveals that the third-order scheme provides a good estimate for the third-order superharmonics. A quantitative assessment of numerical error has also been performed for the spatial and temporal discretization, including energy conservation, a reversibility check, and validation against previous simulations performed with a higher-order spectral (HOS) code. The initially narrow-banded amplitude spectrum exhibits the formation of “sidelobes” at angles of approximately ±35deg to the spectral peak during the simulated extreme wave event, occurring in approximately ten wave periods, with a preferential energy transfer to high-wavenumber components. The directional energy transfer is attributed to resonant third-order interactions with a discussion of the engineering implications.
Funder
Engineering and Physical Sciences Research Council
Subject
Mechanical Engineering,Ocean Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献