Static Characteristics of Journal Bearings With Square Dimples

Author:

Yamada Hiroyuki1,Taura Hiroo2,Kaneko Satoru2

Affiliation:

1. Department of Energy and Environment Science, Graduate School of Nagaoka University of Technology, Kamitomioka-machi 1603-1, Nagaoka-shi, Niigata 940-2188, Japan e-mail:

2. Department of Mechanical Engineering, Nagaoka University of Technology, Kamitomioka-machi 1603-1, Nagaoka-shi, Niigata 940-2188, Japan e-mail:

Abstract

Surface texturing is a technique for improving frictional and hydrodynamic performances of journal bearings because microtextures can serve as reservoirs for oil or traps for debris and may also generate hydrodynamic pressure. Over the past two decades, many researchers have experimentally demonstrated that texturing of various tribological elements can reduce friction force and wear, contributing to improvement of lubrication performance. Some numerical studies have examined the hydrodynamic lubrication conditions and reported that surface texturing affects the static characteristics of journal bearings, such as their load carrying capacity and friction torque. However, the validity of these numerical models has not been confirmed because of a lack of experimental studies. This study proposes a numerical model that includes both inertial effects and energy loss at the edges of dimples on the surface of a journal bearing in order to investigate the bearing's static characteristics. Experimental verification of journal bearings is also conducted with a uniform square-dimple pattern on their full-bearing surface. The results obtained by the model agree well with those of experiment, confirming the model's validity. These results show that under the same operating conditions, textured bearings yield a higher eccentricity ratio and lower attitude angle than the conventional ones with a smooth surface. This tendency becomes more marked for high Reynolds number operating conditions and for textured bearings with a large number of dimples.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3