Affiliation:
1. Applied Solid Mechanics Section, Battelle’s Columbus Laboratories, Columbus, Ohio 43201
2. Fabrication and Quality Control Section, Battelle’s Columbus Laboratories, Columbus, Ohio 43201
Abstract
Computational models for predicting transient temperature distributions, residual stresses, and residual deflections for girth-butt welds are described. Comparisons of predicted and measured temperatures for a two-pass welded pipe show agreement to within 9 percent and 17 percent of the measured values for passes one and two, respectively, the model for predicting residual stresses and residual deflections is based on a finite-element representation recognizing individual passes, temperature dependent elastic-plastic constitutive behavior, elastic unloading for material in the nonlinear stress-strain range, and changes in geometry due to the deformation of each weld pass. Load incrementation and incremental stress-strain relations are also used. Results for a two-pass girth-butt welded pipe show good correlation between residual stresses and residual deflections obtained from the computational model and data obtained from a welded 304 stainless steel pipe.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献