Fractional Optimal Control of a Distributed System Using Eigenfunctions

Author:

Agrawal Om P.1

Affiliation:

1. Mechanical Engineering and Energy Processes, Southern Illinois University, Carbondale, IL 62901

Abstract

This paper presents a formulation and a numerical scheme for fractional optimal control (FOC) for a class of distributed systems. The fractional derivative is defined in the Caputo sense. The performance index of an FOC problem (FOCP) is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by partial fractional differential equations. Eigenfunctions are used to eliminate the space parameter and to define the problem in terms of a set of state and control variables. This leads to a multi-FOCP in which each FOCP could be solved independently. Several other strategies are pointed out to reduce the problem to a finite dimensional space, some of which may not provide a decoupled set of equations. The calculus of variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler–Lagrange equations for the problem. In the proposed technique, the FOC equations are reduced to Volterra-type integral equations. The time domain is discretized into several segments and a time marching scheme is used to obtain the response at discrete time points. For a linear case, the numerical technique results into a set of algebraic equations, which can be solved using a direct or an iterative scheme. The problem is solved for different number of eigenfunctions and time discretizations. Numerical results show that only a few eigenfunctions are sufficient to obtain good results, and the solutions converge as the size of the time step is reduced. The formulation presented is simple and can be extended to FOC of other distributed systems.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3