MIVAS: A Multi-Modal Immersive Virtual Assembly System

Author:

Wan Huagen1,Gao Shuming1,Peng Qunsheng1,Dai Guozhong2,Zhang Fengjun2

Affiliation:

1. Zhejiang University, Hangzhou, P. R. China

2. Chinese Academy of Sciences, Beijing, P. R. China

Abstract

Evaluation and planning of assembly processes in virtual environments have become an active research area in engineering community. However, planning of complex assemblies in virtual environments, especially large-scale virtual environments, is still hindered by limitations like unnatural user interaction, insufficient frame rates, and deficiencies in processing of assembly constraints. In this paper, we present MIVAS, a Multi-modal Immersive Virtual Assembly System. By viewing the virtual assembly system as a finite state machine, we incorporate tracked devices, force feedback dataglove, voice commands, human sounds, fully immersive 4-sided CAVE, together with optimization techniques for both complex assembly models and assembly operations to provide for engineers an intuitive and natural way of assembly evaluation and planning. Testing scenarios on disassembling different components of an intelligent hydraulic excavator are described. Special attention is paid upon such technical issues as interface between CAD packages and the CAVE virtual environment, natural and intuitive user interaction including realistic virtual hand interaction and force feedback, intelligent navigation for assembly operations, and real-time display of complex assemblies.

Publisher

ASMEDC

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-aided process planning in immersive environments: A critical review;Computers in Industry;2021-12

2. Research on the Usability of Three-Dimensional Interactive Gestures of Virtual Assembly;2020 12th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC);2020-08

3. Assessment of virtual reality-based manufacturing assembly training system;The International Journal of Advanced Manufacturing Technology;2019-05-16

4. Virtual Reality in Manufacturing;CIRP Encyclopedia of Production Engineering;2019

5. CAD-VR Integration as a Tool for Industrial Assembly Processes Validation: A Practical Application;Lecture Notes in Computer Science;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3