Affiliation:
1. Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095-1597
Abstract
Over the last half of the twentieth century, a number of purely empirical and mechanism-based correlations have been developed for pool nucleate boiling. Empirical correlations differ from each other substantially with respect to the functional dependence of heat flux on fluid and surface properties, including gravity. The mechanism-based correlations require knowledge of the number density of active sites, bubble diameter at departure, and bubble-release frequency. However, because of the complex nature of the subprocesses involved, it has not been possible to develop comprehensive models or correlations for these parameters. This, in turn, has led to the pessimistic view that mechanistic prediction of nucleate boiling is a hopeless task. However, there is an alternative to the past approaches—complete numerical simulation of the boiling process. Value of this approach for bubble dynamics and associated heat transfer is shown through excellent agreement of predictions with data obtained on microfabricated surfaces on which active nucleation sites can be controlled.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
190 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献