Mechanistic Prediction of Nucleate Boiling Heat Transfer–Achievable or a Hopeless Task?

Author:

Dhir Vijay K.1

Affiliation:

1. Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095-1597

Abstract

Over the last half of the twentieth century, a number of purely empirical and mechanism-based correlations have been developed for pool nucleate boiling. Empirical correlations differ from each other substantially with respect to the functional dependence of heat flux on fluid and surface properties, including gravity. The mechanism-based correlations require knowledge of the number density of active sites, bubble diameter at departure, and bubble-release frequency. However, because of the complex nature of the subprocesses involved, it has not been possible to develop comprehensive models or correlations for these parameters. This, in turn, has led to the pessimistic view that mechanistic prediction of nucleate boiling is a hopeless task. However, there is an alternative to the past approaches—complete numerical simulation of the boiling process. Value of this approach for bubble dynamics and associated heat transfer is shown through excellent agreement of predictions with data obtained on microfabricated surfaces on which active nucleation sites can be controlled.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference33 articles.

1. A Method of Correlating Heat Transfer Data for Surface Boiling of Liquids;Rohsenow;Trans. ASME

2. Void Fraction Measurement During Saturated Pool Boiling of Water on Partially Wetted Vertical Surfaces;Liaw;ASME J. Heat Transfer

3. Heat Transfer Correlation for Natural Convection Boiling;Stephan;Int. J. Heat Mass Transfer

4. Heat Transfer to a Boiling Liquid—Mechanism and Correlation;Forster;ASME J. Heat Transfer

Cited by 190 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3