Temperature and Entropy Generation Analyses Between and Inside Rotating Cylinders Using Copper–Water Nanofluid

Author:

Torabi Mohsen1,Zhang Kaili2,Mahmud Shohel3

Affiliation:

1. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong e-mail: ;

2. Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

3. School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada

Abstract

Entropy generation is squarely linked with irreversibility, and consequently with exergy destruction within a thermal system. This study concerns with the temperature distribution, and local and volumetric averaged entropy generation rates within a cylindrical system with two solid co-rotating inner and outer parts and the middle nanofluid flow part. Temperature-dependent thermal conductivities for solid materials are included within the modeling. To obtain the temperature formula within all three sections, a combined analytical–numerical solution technique is applied. An exact analytical solution is also obtained, when constant thermal conductivities for solid materials are assumed. The resultant data from the analytical–numerical solution technique is verified against the investigated exact solution. Thereafter, the velocity and temperature fields from the combined analytical–numerical solution technique are incorporated into the entropy generation formulations to obtain the local and volumetric averaged entropy generation rates. Using abovementioned procedure, the effects of thermophysical parameters such as nanoparticles volume concentration, Brinkman number, thermal conductivity parameter ratios, outer temperature boundary condition, internal heat generation rates and velocity ratios on the temperature field, and entropy generation rates are investigated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3