Multi-objective Numerical Investigation of a Generic Airblast Injector Design

Author:

Comer Adam L.1,Kipouros Timoleon2,Stewart Cant R.3

Affiliation:

1. Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright Patterson AFB, OH 45433 e-mail:

2. Department of Engineering, Engineering Design Centre, University of Cambridge, Cambridge CB2 1PZ, UK e-mail:

3. CFD Laboratory, Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK e-mail:

Abstract

In combustor design for aero-engines, engineers face multiple opposing objectives with strict constraints. The trend toward lean direct injection (LDI) combustors suggests a growing emphasis on injector design to balance these objectives. Decades of empirical and analytical work have produced low-order methods, including semi-empirical and semi-analytical correlations and models of combustors and their components, but detailed modeling of injector and combustor behavior requires computational fluid dynamics (CFD). In this study, an application of low-order methods and published guidelines yielded generic injector and combustor geometries, as well as CFD boundary conditions of parameterized injector designs. Moreover, semi-empirical correlations combined with a numerical spray combustion solver provided injector design evaluations in terms of pattern factor, thermoacoustic performance, and certain emissions. Automation and parallel coordinate visualization enabled exploration of the dual-swirler airblast injector design space, which is often neglected in published combustor design studies.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference46 articles.

1. Aircraft Technology and Its Relation to Emissions,1999

2. Emissions Reduction Technologies for Military Gas Turbine Engines;J. Propul. Power,2005

3. Recent Developments,1990

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3