Prediction of Thermoacoustic Instability and Fluid–Structure Interactions for Gas Turbine Combustor

Author:

Xia Yu1,Sharkey Patrick1,Verma Ishan2,Khaware Alok2,Cokljat Davor3

Affiliation:

1. Ansys UK Ltd. , Milton Park, Abingdon, Oxfordshire OX14 4RW, UK

2. Ansys Software Pvt. Ltd. , Hinjawadi, Pune 411057, Maharashtra, India

3. Ansys UK Ltd. , Norfolk Street, Sheffield, South Yorkshire S1 2JE, UK

Abstract

Abstract This work simulates a laboratory-scale three-dimensional methane/air burner, which features a bluff body stabilized, lean partially premixed flame experiencing strong limit cycle oscillations. A thin steel liner is installed around the combustion chamber, which heavily interacts with the flow field and produces large amplitude structural deformation via fluid–structure interaction (FSI). An unsteady Reynolds averaged Navier–Stokes (URANS) approach uses the shear stress transport (SST) turbulence model and a flamelet generated manifold (FGM) combustion model to predict the thermoacoustic oscillations in the turbulent reacting flow. The solver also has a built-in finite element structure model, which solves the structural governing equations simultaneously with the computational fluid dynamics (CFD)-computed, finite volume flow equations. This way, a fully coupled, two-way FSI simulation can be performed to predict the thermoacoustic instabilities and the associated solid deformations in the burner. Overall, the predicted strongest pressure oscillation and wall displacement modes (frequency and amplitude) are all in good agreement with the experimental data across different operating conditions. The established workflow may support realistic gas turbine combustor design and prognosis.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference32 articles.

1. NOx Emission Control in Gas Turbines for Combined Cycle Gas Turbine Plant;Proc. Inst. Mech. Eng., Part A,1997

2. Thermoacoustic Limit Cycle Predictions of a Pressurised Longitudinal Industrial Gas Turbine Combustor,2018

3. Numerical Prediction of the Flame Describing Function and Thermoacoustic Limit Cycle for a Pressurized Gas Turbine Combustor;Combust. Sci. Technol.,2019

4. Xia, Y., 2019, “ Prediction of Thermoacoustic Instability in Gas Turbine Combustors,” Ph.D. thesis, Imperial College London, London, UK.https://www.researchgate.net/publication/235328588_Prediction_of_the_Thermoacoustic_Combustion_Instability_in_Gas_Turbines

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3