TURBODYNA: A Generic One-Dimensional Dynamic Simulator for Radial Turbomachinery

Author:

Yang Bijie1,Shu Mengying2,Martinez-Botas Ricardo1,Yang Mingyang2

Affiliation:

1. Department of Mechanical Engineering, Imperial College London , London SW7 2BX, UK

2. School of Mechanical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China

Abstract

AbstractThe turbocharged piston-driven engines are widely used in high altitude long endurance unmanned aerial vehicles (HALE UAVs). Repeated actions of engine pistons and valves give rise to engine pulsations resulting in intensive unsteady flows in the turbocharger. One-dimensional (1-D) modeling, which is computationally effective, plays a crucial role in evaluating turbocharger performance and conducting turbocharger-engine matching under pulsating conditions. The present work introduces a newly developed 1-D software (TURBODYNA) for the sake of improving traditional 1-D modeling's accuracy and generality. The advantages and capabilities of TURBODYNA are illustrated by applying it to three different and typical sorts of turbocharger applications: the single-entry turbine, the twin-entry turbine, and the centrifugal compressor. The unsteady testing conditions include high frequent pressure pulses for the single-entry turbine, out-of-phase pressure pulses for the twin-entry turbine, and rotating stall and surge for the centrifugal compressor. Results show that, by contrast to traditional 1-D modelings, the current 1-D modeling has achieved exceptional improvements in both accuracy and applicability. The novel and powerful tool provides a solid framework for assessing turbocharger unsteady performances and addressing turbocharger-engine matching.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference40 articles.

1. High Altitude Long Endurance (Hale) Uav for Intelligence Missions,1996

2. Turbocharging a High Altitude UAV C.I. Engine,2001

3. Diesel, Spark-Ignition, and Turboprop Engines for Long-Duration Unmanned Air Flights;J. Propul. Power,2018

4. Performance of a Single-Cylinder Diesel Engine Using Oxygen-Enriched Intake Air at Simulated High-Altitude Conditions;Aerosp. Sci. Technol.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3