Influence of Sampling Rate on Reproducibility and Accuracy of Miniature Kolsky Bar Experiments

Author:

Hannah Thomas1,Martin Valerie1,Ellis Stephen2,Kraft Reuben H.3ORCID

Affiliation:

1. Department of Mechanical Engineering, The Pennsylvania State University , 336 Leonhard Building, University Park, PA 16802

2. Los Alamos National Laboratory , LANL MS-T086 P.O. Box 1663, Los Alamos, NM 87544

3. Mechanical Engineering Department of Biomedical Engineering Co-Hire, Institute for Computational and Data Sciences, The Pennsylvania State University , 320 Leonhard Building, University Park, PA 16802

Abstract

Abstract The purpose of this work is to develop and verify a method for quantitatively analyzing data collected from Kolsky bar experiments and to confirm its validity by comparing it to a finite element (FE) model. This study also aims to demonstrate the need for higher sample rate capture in miniature Kolsky bars, 3.16 mm diameter used in this work, by comparing results from two different data acquisition setups on identically sized experimental setups. We identified that the sample capture rate needed to accurately depict experimental results on small-scale systems is at least 400 kHz, which is far greater than what is typically assumed for lager systems. Finally, a statistical method for evaluating results is presented and expanded upon, which removes the dependence on the knowledge and experience of the experimentalist to interpret the data. Using this analysis technique on the two different systems examined in this study, we find upwards of 3.5 times better loading condition reproducibility and up to a 20 MPa reduction in the standard deviation of the sample stress profile, confirming the need for higher quality frequency capture rates.

Funder

Los Alamos National Laboratory

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3