Periodic Optimal Input Shaping for Maximizing Lithium-Sulfur Battery Parameter Identifiability

Author:

Doosthosseini Mahsa1,Xu Chu1,Fathy Hosam2

Affiliation:

1. Department of Mechanical Engineering, University of Maryland , College Park, MD 20741

2. Department of Mechanical Engineering, University of Maryland , College Park, MD 20742

Abstract

Abstract This article investigates the problem of optimal periodic cycling for maximizing the identifiability of the unknown parameters of a Lithium-Sulfur (Li-S) battery model, including estimates of the initial values of species masses. This research is motivated by the need for more accurate Li-S battery modeling and diagnostics. Li-S batteries offer higher energy density levels compared to more traditional lithium-ion batteries, making them an attractive option for energy storage applications. However, the monitoring and control of Li-S batteries are challenging because of the complexity of the underlying multistep reaction chain. The existing literature addresses poor battery parameter identifiability through a variety of tools, including optimal input shaping for Fisher information maximization. However, this literature's focus is predominantly on the identifiability of lithium-ion battery model parameters. The main purpose of this study is to optimize Li-S battery Fisher identifiability through optimal input shaping. The study shows that such optimal input shaping indeed improves the accuracy of Li-S parameter estimation significantly. This outcome is demonstrated in simulation. Moreover, an experimental study is conducted showing that the underlying battery model fits laboratory experimental cycling data reasonably well when the optimized test cycle is employed.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3