The Design, Performance and Analysis of a High Work Capacity Transonic Turbine

Author:

Bryce J. D.1,Litchfield M. R.1,Leversuch N. P.1

Affiliation:

1. Procurement Executive, Ministry of Defence, Royal Aircraft Establishment, Pyestock, Farnborough, Hampshire, England

Abstract

This paper describes the design and testing of a high work capacity single-stage transonic turbine of aerodynamic duty tailored to the requirements of driving the high-pressure core of a low cost turbofan engine. Aerodynamic loading was high for this duty (ΔH/U2 = 2.1) and a major objective in the design was the control of the resulting transonic flow to achieve good turbine performance. Practical and coolable blading was a design requirement. At the design point (pressure ratio = 4.48), a turbine total to total efficiency of 87.0 percent was measured—this being based on measured shaft power and a tip clearance of 1.4 percent of blade height. In addition, the turbine was comprehensively instrumented to allow measurement of aerofoil surface static pressures on both stator and rotor—the latter being expedited via a rotating scanivalve system. Downstream area traverses were also conducted. Analysis of these measurements indicates that the turbine operates at overall reaction levels lower than design but the rotor blade performs efficiently.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Aerodynamic Loss Model for Axial Turbine Design;Journal of Turbomachinery;2023-07-27

2. A Data-Based Policy Model for Intelligent Turbine Cascade Design;Journal of Applied Fluid Mechanics;2022-07-01

3. Influence of exit-to-throat width ratio on performance of high pressure convergent-divergent rotor in a vaneless counter-rotating turbine;Science China Technological Sciences;2011-02-01

4. Tip Clearance Effect on the Performance of a Shrouded Supersonic Impulse Turbine;Journal of Propulsion and Power;2008-11

5. Performance analysis of a transonic high-pressure turbine;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2007-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3