Affiliation:
1. School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
2. School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran e-mail:
Abstract
This paper focuses on the stability analysis of linear fractional-order systems with fractional-order 0<α<2, in the presence of time-varying uncertainty. To obtain a robust stability condition, we first derive a new upper bound for the norm of Mittag-Leffler function associated with the nominal fractional-order system matrix. Then, by finding an upper bound for the norm of the uncertain fractional-order system solution, a sufficient non-Lyapunov robust stability condition is proposed. Unlike the previous methods for robust stability analysis of uncertain fractional-order systems, the proposed stability condition is applicable to systems with time-varying uncertainty. Moreover, the proposed condition depends on the fractional-order of the system and the upper bound of the uncertainty matrix norm. Finally, the offered stability criteria are examined on numerical uncertain linear fractional-order systems with 0<α<1 and 1<α<2 to verify the applicability of the proposed condition. Furthermore, the stability of an uncertain fractional-order Sallen–Key filter is checked via the offered condition.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献