A Nondestructive Evaluation Approach to Characterize Tennis Balls

Author:

Nasrollahi Amir1,Orak Mehmet Sefa2,James Andrew1,Weighardt Laura1,Rizzo Piervincenzo3

Affiliation:

1. Laboratory for Nondestructive Evaluation and Structural Health Monitoring Studies, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261

2. Department of Civil Engineering, Istanbul Technical University (ITU), Maslak, Istanbul 34469, Turkey

3. Laboratory for Nondestructive Evaluation and Structural Health Monitoring Studies, Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261 e-mail:

Abstract

Sometimes, nondestructive evaluation (NDE) or structural health monitoring methods commonly used in engineering structures are used for the betterment of consumer goods. A classic example is the use of sensor systems to monitor the pressure and the quality of car tires. In this paper, we present a nondestructive method to characterize tennis balls. The International Tennis Federation (ITF) specifies which characteristics a tennis ball must have in order to be commercialized. One of these characteristics is bounciness and the standardized method to measure it is the rebound test, where a ball is released from 2.54 m onto a smooth rigid surface and, in order to be approved, the ball must bounce within a certain range. This test can be staged by manufacturers and testing authorities but the equipment necessary to perform it is not readily available to the average consumer. In the study presented in this paper, an empirical method based on the propagation of highly nonlinear solitary waves (HNSWs) is proposed to establish whether a given ball conforms the specifications set by the ITF in terms of bounciness and allowed deformation. The experiments conducted in this study aim to discover a correlation between some features of the waves and the values obtained with the rebound test and the compression test in which the deformation of the ball under a known load is measured. The presence of such correlations could represent a viable alternative to establish the conformity of tennis balls. Based on the empirical evidences collected in this study, a possible new standard is suggested.

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Reference46 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3