A Numerical Investigation on the Onset of the Various Flow Regimes in a Spherical Annulus

Author:

Adel Lalaoua1,Ahcene Bouabdallah1

Affiliation:

1. Laboratory of Thermodynamic and Energetic Systems, Faculty of Physics, USTHB, Bab Ezzouar 16111, Algeria e-mail:

Abstract

The spherical Couette system, consisting of the flow in the annular gap between two concentric rotating spheres, is a convenient problem for studying the laminar–turbulent transition. Many of the transitional phenomena encountered in this flow are of fundamental relevance for the understanding of global processes in the planetary atmospheres as well as in astrophysical and geophysical motions. Furthermore, the study of spherical Couette flow (SCF) is of basic importance in the field of hydrodynamic stability. This paper focuses principally on the numerical prediction of various transitions between flow regimes in a confined spherical gap between a rotating inner sphere and a fixed outer spherical shell. The finite-volume-based computational fluid dynamics, FLUENT software package, is adopted to investigate numerically the flow of a viscous incompressible fluid in the closed spherical gap. Two important dimensionless parameters completely define the flow regimes: the Reynolds number, Re = Ω1R12/ν, for the rotation of the inner sphere and the gap width, β = (R2 − R1)/R1 = 0.1, for the geometry. The numerical calculations are carried out over a range of Reynolds number from two until 60,000. The numerical results are compared with the experimental data available in the literature, and the agreement between the two approaches is very good. The laminar–turbulent transition, the onset of different instabilities, the formation mechanisms of various structures, and the flow behavior are examined and described in detail by the pressure field, meridional streamlines, circumferential velocity, and skin friction coefficient. In addition, the velocity time series and the corresponding power spectral density are considered and analyzed over a large range of Reynolds number. Three kinds of fundamental frequencies expressed by F0, F1, and F2 are obtained corresponding to the spiral mode associated with the wavy mode (SM + WM), the wavy mode (WVF), and the chaotic fluctuation (CF), respectively. However, no sharp fundamental frequency components are observed for the turbulent regime.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3