Probabilistic Force Prediction in Cold Sheet Rolling by Bayesian Inference

Author:

Nelson Andrew W.1,Malik Arif S.2,Wendel John C.1,Zipf Mark E.3

Affiliation:

1. Parks College of Engineering, Aviation, and Technology Saint Louis University, 3450 Lindell Boulevard, St. Louis, MO 63103

2. Parks College of Engineering, Aviation, and Technology Saint Louis University, 3450 Lindell Boulevard, St. Louis, MO 63103 e-mail:

3. I2S, LLC, 475 Main Street, Yalesville, CT 06492 e-mail:

Abstract

A primary factor in manufacturing high-quality cold-rolled sheet is the ability to accurately predict the required rolling force. Rolling force directly influences roll-stack deflections, which correlate to strip thickness profile and flatness. Accurate rolling force predictions enable assignment of efficient pass schedules and appropriate flatness actuator set-points, thereby reducing rolling time, improving quality, and reducing scrap. Traditionally, force predictions in cold rolling have employed deterministic, two-dimensional analytical models such as those proposed by Roberts and Bland and Ford. These simplified methods are prone to inaccuracy, however, because of several uncertain, yet influential, model parameters that cannot be established deterministically under diverse cold rolling conditions. Typical uncertain model parameters include the material's strength coefficient, strain-hardening exponent, strain-rate dependency, and the roll-bite friction characteristics at low and high mill speeds. Conventionally, such parameters are evaluated deterministically by comparing force predictions to force measurements and employing a best-fit regression approach. In this work, Bayesian inference is applied to identify posterior probability distributions of the uncertain parameters in rolling force models. The aim is to incorporate Bayesian inference into rolling force prediction for cold rolling mills to create a probabilistic modeling approach that learns as new data are added. The rolling data are based on stainless steel types 301 and 304, rolled on a 10-in. wide, 4-high production cold mill. Force data were collected by observing load-cell measurements at steady rolling speeds for four coils. Several studies are performed in this work to investigate the probabilistic learning capability of the Bayesian inference approach. These include studies to examine learning from repeated rolling passes, from passes of diverse coils, and by assuming uniform prior probabilities when changing materials. It is concluded that the Bayesian updating approach is useful for improving rolling force probability estimates as evidence is introduced in the form of additional rolling data. Evaluation of learning behavior implies that data from sequential groups of coils having similar gauge and material is important for practical implementation of Bayesian updating in cold rolling.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference21 articles.

1. A Simplified Cold Rolling Model,1965

2. The Calculation of Roll Force and Torque in Cold Strip Rolling With Tensions;Proc. Inst. Mech. Eng.,1948

3. Prediction of Rolling Force Using an Adaptive Neural Network Model During Cold Rolling of Thin Strip;Int. J. Modern Phys. B,2008

4. A Neural Network Based Methodology for the Prediction of Roll Force and Roll Torque in Fuzzy Form for Flat Rolling Process;Int. J. Adv. Manuf. Technol.,2003

5. The Role of Neural Networks in the Optimization of Rolling Processes;J. Mater. Process. Technol.,1998

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3