Affiliation:
1. Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287
Abstract
At present, it is not clear how the fluctuating temperature at the wall can be properly specified for near-wall turbulent heat-flux models. The conventional approach is to assume zero fluctuating temperature or zero gradient for the temperature variance at the wall. These are idealized specifications and the latter condition could lead to an ill-posed problem for fully developed pipe and channel flows. In this paper, the validity and extent of the zero fluctuating wall temperature condition for heat transfer calculations are examined. The approach taken is to assume Taylor series expansions in the wall normal coordinate for the fluctuating quantities that are general enough to account for both zero and nonzero temperature fluctuations at the wall and to develop a near-wall turbulence model allowing finite values of the wall temperature variance. As for the wall temperature variance boundary condition, it is estimated by solving the coupled heat transfer problem between the fluid and the solid wall. The eddy thermal conductivity is calculated from the temperature variance and its dissipation rate. Heat transfer calculations assuming both zero and nonzero fluctuating wall temperature reveal that the zero fluctuating wall temperature assumption is quite valid for the mean field and the associated integral heat transfer properties. The effects of nonzero fluctuating wall temperature on the fluctuating field are limited only to a small region near the wall for most fluid/solid combinations considered.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献