Affiliation:
1. Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125 e-mail:
Abstract
The syringe in a subcutaneous auto-injector may be subjected to internal pressure transients due to the normal operation of the injection mechanism. These transients are similar to transients in fluid-filled pipelines observed during water hammer events. In this paper, the effect of an air gap in the syringe and a converging section is studied experimentally and numerically in a model system which consists of a fluid-filled metal tube that is impulsively loaded with a projectile to simulate the action of the auto-injector mechanism operation. The air between the buffer and the water results in a complex interaction between the projectile and the buffer. Also, there are tension waves inside the tube due to the presence of a free surface and the motion of the buffer, and this causes distributed cavitation which, in turn, gives rise to steepening of the pressure waves. The converging section can amplify the pressure waves if the wave front is sharp, and it can enhance the collapse of bubbles. Pressures as high as 50 MPa have been measured at the apex of the cone with impact velocities of 5.5 m/s.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献