Wear Analysis of Angular Contact Ball Bearing in Multiple-Bearing Spindle System Subjected to Uncertain Initial Angular Misalignment

Author:

Yang Zhongchi1,Zhang Yu1,Zhang Ke2,Li Songhua2

Affiliation:

1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China

2. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China; National-Local Joint Engineering Laboratory of NC Machining Equipment and Technology of High-Grade Stone, Shenyang 110168, China

Abstract

Abstract The effects of the uncertainty of angular misalignment on the wear of angular contact ball bearings in the spindle system are investigated. The wear model of bearing raceways is derived based on the Archard model. The angular misalignment caused by mounting error is assumed to comply with normal distribution, Monte Carlo method is used to extract the angular misalignment sample. Based on the spindle system model, the spinning speed, pitch angle, and contact force of ball elements in each angular contact ball bearing are calculated. The wear depth of bearing raceways is analyzed. The results show that the uncertainty of the initial angular misalignment leads to significant dispersion of wear depth of ball bearings, but the dispersion degree is related to spindle speed, angular misalignment cases, and bearing mounting position. Increasing the spindle speed increases the wear depth but decreases the wear depth dispersion.

Funder

Northeastern University

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference32 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3