Conceptual Design and Cooling Blade Development of 1700°C Class High-Temperature Gas Turbine

Author:

Ito Shoko1,Saeki Hiroshi1,Inomata Asako1,Ootomo Fumio1,Yamashita Katsuya1,Fukuyama Yoshitaka1,Koda Elichi2,Takehashi Toru2,Sato Mikio2,Koyama Miki3,Ninomiya Toru3

Affiliation:

1. Toshiba Corporation, Yokohama, Japan

2. Central Research Institute of Electric Power Industry, Yokosuka, Japan

3. New Energy and Industrial Technology Development Organization, Tokyo, Japan

Abstract

In this paper we describe the conceptual design and cooling blade development of a 1700°C-class high-temperature gas turbine in the ACRO-GT-2000 (Advanced Carbon Dioxide Recovery System of Closed-Cycle Gas Turbine Aiming 2000 K) project. In the ACRO-GT closed cycle power plant system, the thermal efficiency aimed at is more than 60% of the higher heating value of fuel (HHV). Because of the high thermal efficiency requirement, the 1700°C-class high-temperature gas turbine must be designed with the minimum amount of cooling and seal steam consumption. The hybrid cooling scheme, which is a combination of closed loop internal cooling and film ejection cooling, was chosen from among several cooling schemes. The elemental experiments and numerical studies, such as those on blade surface heat transfer, internal cooling channel heat transfer, and pressure loss and rotor coolant passage distribution flow phenomena, were conducted and the results were applied to the conceptual design advancement. As a result, the cooling steam consumption in the first stage nozzle and blade was reduced by about 40% compared with the previous design that was performed in the WE-NET (World Energy Network) Phase-I.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3