Recent Advances in Computational Thermostructural Analysis of Composite Plates and Shells With Strong Nonlinearities

Author:

Argyris John1,Tenek Lazarus2

Affiliation:

1. Institute for Computer Applications, University of Stuttgart, D-70569, Stuttgart, Germany

2. Institute for Computer Applications, University of Stuttgart, D-70569, Stuttgart, Germany and Sir George Cayley Institute, Centre for Techno-Mathematics and Scientific Computing, University of Westminster, London W1M 8JS, UK

Abstract

The article presents some modern developments in computational technology for the nonlinear thermostructural analysis of laminated composite plates and shells of arbitrary geometry. Following a review of the current state of the art, it particularly emphasizes on new finite element methodologies that can be applied to the study of complex laminated shells both thermally and structurally using the same topology constructed via simple simplex triangular elements based on respective first-order lamination theories. Very high temperatures are imposed on some examples in order to demonstrate the high effect of nonlinearity. In addition, the authors want to prepare the ground for the advent of new high-temperature materials. For the numerical examples presented comparison with reference solutions is made where available. Thus the present overview intends to impact a continuing discussion on the unification and integration of thermal and structural analyses methods as they apply to large and complex high-temperature composite shell structures under combined thermal and mechanical loading. In this respect it also intends to contribute to the on-going efforts of integrating thermal and structural engineering codes and the development of suitable interfaces. Future research trends are also identified.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3