Improved Inverse Solutions for On-Line Machine Tool Monitoring

Author:

Olson Lorraine1,Throne Robert2,Rost Eric3

Affiliation:

1. Department of Mechanical Engineering

2. Department of Electrical and Computer Engineering, Rose-Hulman Institute of Technology, Terre Haute, Indiana

3. Department of Mechanical Engineering, University of Nebraska, Lincoln, Nebraska

Abstract

The identification of tool/chip interface temperatures from remote sensor measurements is a steady inverse heat transfer problem that arises in online machine tool monitoring. In a previous paper we developed a set of inverse approaches, vector projection inverse methods, specifically for this problem. These methods rely on two types of sensor measurements: temperatures and heat fluxes. However, because of the extreme ill-conditioning of the tool configuration we studied previously, only a very limited amount of information could be obtained using any of the inverse approaches examined. In an effort to understand the impact of physical parameters on the conditioning of the problem we examined two modifications to the simulated cutting tool: we increased the thermal conductivity of the tool insert, and we reduced the thickness of the tool insert. Inverse solutions were computed on both configurations with all methods for two temperature profiles and various noise levels. The estimated tool/chip interface temperature for the high conductivity tool showed no improvement compared to the original configuration, since the temperature profiles on the sensor surface were unchanged. However, for the thinner tool, the estimated temperatures were substantially more accurate than with the original configuration. With this thinner tool configuration, an optimal set of four sensors could be used to estimate these temperatures at the tool/chip interface to within a few degrees, even with noisy sensor data.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3