Some Observations on the Computational Sensitivity of Rotating Cavity Flows

Author:

Hickling Tom1,He Li1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

Abstract

Abstract Across the open literature, there is no clear consensus on what the most suitable modeling fidelity is for rotating cavity flows. Although it is a widely held opinion that unsteady Reynolds-averaged-Navier–Stokes (URANS) approaches are unsuitable, many authors have succeeded in getting reasonable heat transfer results with them. There is also a lack of research into the validity of hybrid URANS/large eddy simulation (LES) type approaches such as detached eddy simulation (DES). This paper addresses these research challenges with a systematic investigation of a rotating cavity with axial throughflow at Grashof numbers of 3.03×109 and 3.03×1011. The disk near-wall layers remained laminar at both conditions, meaning that a turbulence model should not be active in these regions. The disk heat transfer was observed to affect the near-disk aerodynamics, which in turn affect the disk heat transfer: this feedback loop implies that conjugate heat transfer computations of rotating cavities may be worth investigating. On the shroud, additional eddy viscosity in URANS and DES was found to interfere with the formation of heat transfer enhancing streaks, whilst these were always captured by LES. DES exhibited a concerning behavior at the higher Grashof number. Locally generated eddy viscosity from the shroud was injected into the bulk fluid by the radial inflow. This contaminated the entire cavity with nonphysical modeled turbulence. As the radial inflow is a characteristic feature of rotating cavity flows, these results show that caution is necessary when applying hybrid URANS/LES approaches to this type of flow.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference45 articles.

1. Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control,2013

2. Computational Fluid Dynamics for Turbomachinery Internal Air Systems;Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.,2007

3. Review of Buoyancy-Induced Flow in Rotating Cavities;ASME J. Turbomach.,2015

4. Efficient Computational Model for Nonaxisymmetric Flow and Heat Transfer in Rotating Cavity;ASME J. Turbomach.,2011

5. Rotating Cavity With Axial Throughflow of Cooling Air: Heat Transfer;ASME J. Turbomach.,1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3