Affiliation:
1. Ecole Centrale de Lyon, Ecully, France
2. ONERA, Chatillon, France
Abstract
This paper analyses the flow in a transonic turbine stage, using time-dependent numerical results.
Unsteady blade-row interaction has repercussions on the time-averaged flow, which are represented by the so-called “deterministic correlations”. These correlations appear in the system of equations governing the time-averaged flow; they can be divided into four types with different physical meanings.
Time-dependent results enable direct computation of these correlations in both rotor and stator frames of reference. The computed deterministic correlations are analysed in the paper, in order to bind them to physical phenomena and to evaluate their influence on the time-averaged flow field.
This analysis is also intended to help assess the shortcomings of simple mixing-plane methods and more complex approaches using deterministic correlation models. While the first part focuses on one particular type of deterministic correlation, the so-called “spatial correlation”, the second part attempts a more detailed analysis of time-dependent results and gives some clues to the orders of magnitude of the four types of deterministic correlation. The conclusions should be taken with caution; they may partly depend on the present turbine configuration with a specified structure of unsteadiness and on the present turbulence model.
Publisher
American Society of Mechanical Engineers
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献